Convergence Analysis of Inexact Randomized Iterative Methods
نویسندگان
چکیده
منابع مشابه
Convergence Analysis of Iterative Solvers in Inexact Rayleigh Quotient Iteration
Abstract. We present a detailed convergence analysis of preconditioned MINRES for approximately solving the linear systems that arise when Rayleigh Quotient Iteration is used to compute the lowest eigenpair of a symmetric positive definite matrix. We provide insight into the “slow start” of MINRES iteration in both a qualitative and quantitative way, and show that the convergence of MINRES main...
متن کاملLocal Convergence Analysis for a Certain Class of Inexact Methods
Abstract. We provide a local convergence analysis for a certain class inexact methods in a Banach space setting, in order to approximate a solution of a nonlinear equation [6]. The assumptions involve center–Lipschitz–type and radius–Lipschitz–type conditions [15], [8], [5]. Our results have the following advantages (under the same computational cost): larger radii, and finer error bounds on th...
متن کاملConvergence analysis of inexact proximal Newton-type methods
We study inexact proximal Newton-type methods to solve convex optimization problems in composite form: minimize x∈Rn f(x) := g(x) + h(x), where g is convex and continuously differentiable and h : R → R is a convex but not necessarily differentiable function whose proximal mapping can be evaluated efficiently. Proximal Newton-type methods require the solution of subproblems to obtain the search ...
متن کاملOn Semilocal Convergence of Inexact Newton Methods
Inexact Newton methods are constructed by combining Newton’s method with another iterative method that is used to solve the Newton equations inexactly. In this paper, we establish two semilocal convergence theorems for the inexact Newton methods. When these two theorems are specified to Newton’s method, we obtain a different Newton-Kantorovich theorem about Newton’s method. When the iterative m...
متن کاملOn the Convergence of Inexact Newton Methods
A solid understanding of convergence behaviour is essential to the design and analysis of iterative methods. In this paper we explore the convergence of inexact iterative methods in general, and inexact Newton methods in particular. A direct relationship between the convergence of inexact Newton methods and the forcing terms is presented in both theory and numerical experiments.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Scientific Computing
سال: 2020
ISSN: 1064-8275,1095-7197
DOI: 10.1137/19m125248x